[image: image1.png]You will create a Hash Table for this assignment. The Hash Table will have 26 buckets
represented by an array of pointers of size of 26. Each of those pointers points to the head of
Linked List of key value pair. Hash Table has six operations, hash, put, get, exists, remove, anc
free_hash.

int hash(const char *key);

void put(struct node shtable[], const char skey, int value);
int get(struct node *htable[], const char *key);

boolean exists(struct node *htable[], const char key);

void remove(struct node *htable[], const char *key);

void free_hash(struct node *htable[]);
First modify your linked list implementation to have two values:

struct node {
char *key;
int value;
struct node *next;

}

‘Then implement the hash function. The hash function willtake an array of characters (string)
and sum up their int values and take the modulus 26. For example: hash("He11o") call will
return int value of 6 = (72 + 101 + 108 + 108 + 111) % 26.

Initially your Hash Table will looks like thi

struct node *mytable[26]; // array of pointers that points to node

0 — NULL

1 — NULL

2 — NULL

25 — NULL

[image: image2.png]When a single call of putis called: put (mytable, “Hillary Clinton", 19); The string
“Hillary Clinton” will be hashed to the int value of 2, therefore a new node will be appended on
the 3rd linked list in the array representing your hashtable.

0 — NULL

1 — NULL

2 — | key:"Hillary Clinton", value: | — NULL
19

25 — NULL

Adding more key value pair will fill up the hash table.

put(mytable, "Bernie Sanders”, 15);

0 — NULL

1 — NULL

2 — | key:"Hillary Clinton", value: 19 | — NULL

23 — | key:"Bernie Sanders”, value: 15 | — NULL

24 — NULL

25 — NULL

[image: image3.png]If there's a collision (same key is produced) the created node will be appended to the end of ist

put(mytable, "j", 3);

0 — NULL

1 — NULL

2| |- |key

\value: 106 | — NULL

ilary Clinton

23 — | key:"Bernie Sanders”, value: 15 | — NULL

24 — NULL

25 — NULL

[image: image4.png]get function retrieves the value, given a key.

get(mytable, "Hillary Clinton") == 2

I the key is missing, retun 0.

get(mytable, "Donald Trump")

Now you might be thinking, what if the value is actually 0? To help with that situation, you'l
implement the exists function. Exists function checks if the key is in the hash table and return
true or faise.

true
false

exists(mytable, "Bernie Sanders’
exists(mytable, "Donald Trump”) =

Finally, remove function removes the key from the table.

remove(mytable, "Hillary Clinton");

0 — NULL

1 — NULL

2 — | key:"j", value: 106 — NULL

23 — | key:"Bernie Sanders", — NULL

24 — NULL

25 — NULL

[image: image5.png]Ifthe key doesn't exist in the hash table, the function will not o anything.
Finally, free_hash function will free all the heap allocated data from the memory.
free_hash(mytable)

Above call will free up all the nodes that has been allocated.

You are required to submit 4 fles for this assignment: listh, list.c, hash.h and hash.c.

However, it is advisable to create a main.c program that tests your hash table.

............ struct node {

 int value;

 struct node *next;

};

struct node *create(int v);

void append(struct node *root, int v);

void print(struct node *root);

void free_list(struct node *root);

//You should return a new pointer pointing to the first element of prepedned list

struct node *prepend(struct node *root, int value);

int get(struct node *root, int index);

//Assume that this method will never be called to add a node at position 0

//(third argument was added as correction)

void add(struct node *root, int index, int value);

//Assume that this method will never be called to remove a node at position 0

//(function was renamed to avoid conflict)

void remove_node(struct node *root, int index);

int find(struct node *root, int value);

..
